Riemannsche Zeta-Funktion

Funktionsgraph der Zeta-Funktion für reelle Argumente im Bereich −20 < s < 10
Komplexes Schaubild mit Kolorierung der Funktionswerte: Die Riemannsche Zeta-Funktion in der komplexen Ebene: Die Null, also der Ursprung der komplexen Ebene, befindet sich genau in der Mitte des Schaubildes. Die im Bild sichtbaren, sogenannten nicht-trivialen Nullstellen der Zeta-Funktion liegen auf der nicht eingezeichneten, vertikalen Linie durch 0,5. Sie sind als schwarze Punkte auf dieser gedachten Linie erkennbar und spiegelsymmetrisch zur reellen Achse, also zur horizontalen Linie durch den Ursprung, angeordnet. Das Schaubild besitzt einen einzigen rein weißen Punkt. Dieser gehört zur einzigen Polstelle der Zeta-Funktion in 1, also zu demjenigen Punkt, der sich eine Einheit rechts vom Ursprung befindet und in dem die Zeta-Funktion nicht definiert ist. Die sogenannten trivialen Nullstellen liegen auf dem linken Teil der reellen Achse, nämlich in −2, −4, −6, −8 …

Die Riemannsche Zeta-Funktion, auch Riemannsche ζ-Funktion oder Riemannsche Zetafunktion (nach Bernhard Riemann), ist eine komplexwertige, spezielle mathematische Funktion, die in der analytischen Zahlentheorie, einem Teilgebiet der Mathematik, eine wichtige Rolle spielt. Erstmals betrachtet wurde sie im 18. Jahrhundert von Leonhard Euler, der sie im Rahmen des Basler Problems untersuchte. Bezeichnet wird sie üblicherweise mit dem griechischen Buchstaben (Zeta).

Ihr Definitionsbereich umfasst alle komplexen Zahlen außer der Zahl . Für Werte mit Realteil größer als wird die Riemannsche Zeta-Funktion über eine Dirichlet-Reihe definiert. Sie lautet:


für .


Mittels analytischer Fortsetzung kann sie zu einer auf holomorphen Funktion ausgeweitet werden. Sie erfüllt eine wichtige Funktionalgleichung, mit deren Hilfe sie sogar charakterisiert werden kann.

Von großer Bedeutung für die Zahlentheorie ist der Zusammenhang der Zeta-Funktion mit der Primfaktorzerlegung natürlicher Zahlen. Auf dieser Basis konnte Riemann im Jahr 1859 die sehr enge und nicht offensichtliche Beziehung zwischen den Primzahlen und der Lage der Nullstellen der Zeta-Funktion nachweisen. So folgt aus der Tatsache für alle komplexen Zahlen mit bereits, dass die -te Primzahl „recht genau“ den Wert hat – genauer gesagt folgt[1][2]

Hier bezeichnet den natürlichen Logarithmus von . Genauere Informationen über nullstellenfreie Bereiche macht das Bild um die Primzahlverteilung deutlicher. Die bisher unbewiesene Riemannsche Vermutung sagt aus, dass alle nicht-trivialen Nullstellen der Riemannschen Zeta-Funktion den Realteil haben, also auf einer gemeinsamen Geraden liegen. Ob diese Vermutung zutrifft, ist eines der wichtigsten ungelösten Probleme der Mathematik. Aufgrund der Bedeutung der Primzahlen für moderne Kryptosysteme (wie in etwa der RSA-Verschlüsselung) genießt die Riemannsche Vermutung auch außerhalb der reinen Zahlentheorie Aufmerksamkeit.

Das Verhalten der Riemannschen Zeta-Funktion in den Bereichen und gilt als gut verstanden. Jedoch sind ihre Eigenschaften innerhalb des kritischen Streifens weitestgehend unbekannt und Gegenstand bedeutender Vermutungen. Dies betrifft unter anderem die Fragen nach asymptotischem Wachstum in imaginärer Richtung und der für die Zahlentheorie so wichtigen Nullstellenverteilung. Nach heutigem Wissensstand beschreibt die Zeta-Funktion im Streifen im Wesentlichen Chaos. Die Werte der Nullstellen bauen nicht nur Brücken zur Theorie der Primzahlen, sondern höchstwahrscheinlich auch zur modernen Quantenphysik. Weitere Anwendungsgebiete sind die Wahrscheinlichkeitstheorie und die Theorie der automorphen Formen (insbesondere im Feld des Langlands-Programms).

Aus Sicht der algebraischen Zahlentheorie ist die Riemannsche Zeta-Funktion nur ein Spezialfall einer ganzen Klasse sogenannter L-Funktionen. So entspricht sie der zum Trivialen Charakter modulo 1 gehörigen Dirichletschen L-Funktion und der zum Zahlkörper (rationale Zahlen) korrespondierenden Dedekindschen Zeta-Funktion.

Wegen der überragenden Bedeutung der Riemannschen Vermutung für die Zahlentheorie und deren Anwendungen bleibt der Themenkreis der Riemannschen Zeta-Funktion ein Gebiet intensiver mathematischer Forschung. Entscheidende Fortschritte erzielten Mathematiker wie zum Beispiel Lindelöf, Hadamard, de La Vallée Poussin, Hardy, Littlewood, Selberg, Woronin und Conrey.

  1. Barkley Rosser: Explicit bounds for some functions of prime numbers. In: American Journal of Mathematics. 63. Jahrgang, Nr. 1, 1941, S. 211–232, doi:10.2307/2371291. Vorlage:Cite journal: Der Parameter language wurde bei wahrscheinlich fremdsprachiger Quelle nicht angegeben.
  2. E. Freitag, R. Busam: Funktionentheorie 1, Springer; Auflage: 4. Aufl. 2006, ISBN 978-3-540-31764-7, S. 440

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search